Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 156
1.
Clin Interv Aging ; 19: 705-714, 2024.
Article En | MEDLINE | ID: mdl-38716142

Background: As a nutritional indicator, a lower level of geriatric nutritional risk index (GNRI) has been suggested as a predictor for poor prognosis in acute coronary syndrome (ACS). However, whether GNRI could improve the predictive value of the Global Registry of Acute Coronary Events (GRACE) score for the prognosis in elderly patients with non-ST segment elevation myocardial infarction (NSTEMI) after PCI remains unclear. Methods: A total of 446 elderly patients with NSTEMI after percutaneous coronary intervention (PCI) were consecutively enrolled. Patients were divided into major adverse cardiovascular and cerebrovascular events (MACCE) group and control group according to the occurrence of MACCE during one year follow up. The clinical parameters including GNRI were compared to investigate the predictors for MACCE. The performance after the addition of GNRI to the GRACE score for predicting MACCE was determined. Results: A total of 68 patients developed MACCE. In unadjusted analyses, the rate of MACCE was significantly higher in the 93.8

Geriatric Assessment , Non-ST Elevated Myocardial Infarction , Nutrition Assessment , Percutaneous Coronary Intervention , Humans , Percutaneous Coronary Intervention/adverse effects , Aged , Female , Male , Geriatric Assessment/methods , Prognosis , Risk Assessment , Risk Factors , Aged, 80 and over , Predictive Value of Tests , Logistic Models , Nutritional Status
2.
J Phys Chem Lett ; 15(18): 5000-5007, 2024 May 09.
Article En | MEDLINE | ID: mdl-38695747

Water/alcohol-soluble cathode interlayers are widely utilized in organic electronic devices. However, the mechanism by which acetic acid (AcOH) facilitates the solubility of neutral cathode interlayers in water/alcohol remains unclear. This paper focuses on the AcOH-induced dissolution mechanism of neutral cathode interlayer materials and establishes quantitative relationships for chemical reactions. It was found that AcOH could react acid-base with the amino groups of PFN or PDIN, resulting in the formation of trace amounts of quaternary ammonium salts, which ultimately enhance the solubility of PFN and PDIN in methanol. Additionally, this study clarifies the debate about the role of neutral cathode interlayers in organic electronic devices: It is primarily the unprotonated groups of water/alcohol-soluble cathode interlayers that play a critical role in interfacial modification rather than the protonated groups produced by postacid reaction, which lays an important theoretical foundation for the development of high-performance interfacial materials.

3.
Exp Eye Res ; : 109940, 2024 May 21.
Article En | MEDLINE | ID: mdl-38782178

Posterior Capsule Opacification (PCO), the most frequent complication of cataract surgery, is caused by the infiltration and proliferation of lens epithelial cells (LECs) at the interface between the intraocular lens (IOL) and posterior lens capsule (PLC). According to the "no space, no cells, no PCO" theory, high affinity (or adhesion force) between the IOL and PLC would decrease the IOL: PLC interface space, hinder LEC migration, and thus reduce PCO formation. To test this hypothesis, an in vitro hemisphere-shaped simulated PLC (sPLC) was made to mimic the human IOL: PLC physical interactions and to assess their influence on LEC responses. Three commercially available IOLs with different affinities/adhesion forces toward the sPLC, including Acrylic foldable IOL, Silicone IOL, and PMMA IOL, were used in this investigation. Using the system, the physical interactions between IOLs and sPLC were quantified by measuring the adhesion force and interface space using an adhesion force apparatus and Optical Coherence Tomography, respectively. Our data shows that high adhesion force and tight binding between IOL and sPLC contribute to a small interface space (or "no space"). By introducing LECs into the in vitro system, we found that, with small interface space, among all IOLs, acrylic foldable IOLs permitted the least extent of LEC infiltration, proliferation, and differentiation (or "no cells"). Further statistical analyses using clinical data revealed that weak LEC responses are associated with low clinical PCO incidence rates (or "no PCO"). The findings support that the in vitro system could simulate IOL: PLC interplays and predict IOLs' PCO potential in support of the "no space, no cells, no PCO" hypothesis.

4.
J Multidiscip Healthc ; 17: 2399-2407, 2024.
Article En | MEDLINE | ID: mdl-38779307

Objective: To analyse clinical manifestations of unexplained abnormal liver function and perform hepatobiliary histopathology procedures on patients to evaluate the value of liver biopsy in diagnosing the aetiology of unexplained abnormal liver function. Methods: A convenience sampling method was used to retrospectively collect the data of patients who were diagnosed with unexplained abnormal liver function and who received liver biopsy in the Pathology Department of Tianjin Second People's Hospital, China, between March 2022 and July 2023 to analyse liver pathology and clinical manifestations. Results: A total of 1302 patients were included in this study, which mainly included 11 diseases: autoimmune liver disease (74 cases, 5.68%), drug-induced liver injury (DILI) (204 cases, 15.67%), cancer (237 cases, 18.20%), non-alcoholic fatty liver disease (104 cases, 7.99%), non-alcoholic steatohepatitis (74 cases, 5.68%), viral hepatitis (490 cases, 37.63%), other types of hepatitis (30 cases, 2.30%), cholestatic liver disease (17 cases, 1.31%), alcoholic liver disease (15 cases, 1.15%), hepatic cyst (5 cases, 0.38%) and Gilbert syndrome (4 cases, 0.31%). The success rate of liver biopsy sampling was 100%, and (1.52 ± 0.130) tissue strips were sampled. The average operating time was 11.52 minutes. The percutaneous liver biopsy did not significantly increase short-term liver function index values (serum γ-glutamyl transpeptidase, total bilirubin, alanine transaminase, aspartate aminotransferase, alkaline phosphatase). Ninety-two patients had a small amount of liver subcapsular fluid, but there was no progress after medical treatment. Conclusion: Ultrasound-guided percutaneous liver biopsy has value in the diagnosis of unexplained abnormal liver function. Viral hepatitis, cancer and DILI are the most common causes of unexplained abnormal liver function. Liver biopsy does not aggravate the organic and functional impairment of the liver.

5.
J Nutr Biochem ; 129: 109636, 2024 Jul.
Article En | MEDLINE | ID: mdl-38561079

The purpose of this study is to investigate if grape consumption, in the form of grape powder (GP), could protect against ultraviolet (UV)-induced cataract. Mice were fed with the regular diet, sugar placebo diet, or a grape diet (regular diet supplemented with 5%, 10%, and 15% GP) for 3 months. The mice were then exposed to UV radiation to induce cataract. The results showed that the GP diet dose-dependently inhibited UV-induced cataract and preserved glutathione pools. Interestingly, UV-induced Nrf2 activation was abolished in the groups on the GP diet, suggesting GP consumption may improve redox homeostasis in the lens, making Nrf2 activation unnecessary. For molecular target prediction, a total of 471 proteins regulated by GP were identified using Agilent Literature Search (ALS) software. Among these targets, the X-linked inhibitor of apoptosis (XIAP) was correlated with all of the main active ingredients of GP, including resveratrol, catechin, quercetin, and anthocyanins. Our data confirmed that GP prevented UV-induced suppression of XIAP, indicating that XIAP might be one of the critical molecular targets of GP. In conclusion, this study demonstrated that GP protected the lens from UV-induced cataract development in mice. The protective effects of GP may be attributed to its ability to improve redox homeostasis and activate the XIAP-mediated antiapoptotic pathway.


Cataract , Dietary Supplements , NF-E2-Related Factor 2 , Ultraviolet Rays , Vitis , X-Linked Inhibitor of Apoptosis Protein , Animals , Cataract/prevention & control , Cataract/metabolism , Cataract/etiology , NF-E2-Related Factor 2/metabolism , Ultraviolet Rays/adverse effects , Vitis/chemistry , X-Linked Inhibitor of Apoptosis Protein/metabolism , Mice , Lens, Crystalline/metabolism , Lens, Crystalline/radiation effects , Lens, Crystalline/drug effects , Male , Resveratrol/pharmacology , Glutathione/metabolism , Signal Transduction/drug effects , Mice, Inbred C57BL , Anthocyanins/pharmacology
6.
Polymers (Basel) ; 16(7)2024 Apr 08.
Article En | MEDLINE | ID: mdl-38611277

To investigate the relationship between structures and adsorption properties, four different morphologies of chitosan, with hydrogel (CSH), aerogel (CSA), powder (CSP), and electrospinning nanofiber (CSEN) characteristics, were employed as adsorbents for the removal of Acid Red 27. The structures and morphologies of the four chitosan adsorbents were characterized with SEM, XRD, ATR-FTIR, and BET methods. The adsorption behaviors and mechanisms of the four chitosan adsorbents were comparatively studied. All adsorption behaviors exhibited a good fit with the pseudo-second-order kinetic model (R2 > 0.99) and Langmuir isotherm model (R2 > 0.99). Comparing the adsorption rates and the maximum adsorption capacities, the order was CSH > CSA > CSP > CSEN. The maximum adsorption capacities of CSH, CSA, CSP, and CSEN were 2732.2 (4.523), 676.7 (1.119), 534.8 (0.885), and 215.5 (0.357) mg/g (mmol/g) at 20 °C, respectively. The crystallinities of CSH, CSA, CSP, and CSEN were calculated as 0.41%, 6.97%, 8.76%, and 39.77%, respectively. The crystallinity of the four chitosan adsorbents was the main factor impacting the adsorption rates and adsorption capacities, compared with the specific surface area. With the decrease in crystallinity, the adsorption rates and capacities of the four chitosan adsorbents increased gradually under the same experimental conditions. CSH with a low crystallinity and large specific surface area resulted in the highest adsorption rate and capacity.

7.
ACS Omega ; 9(15): 16976-16991, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38645368

The paper focuses on deep oil and gas resources in the Bayingobi Formation of Guaizihu Sag in the Yin'e Basin. Previous studies overlooked the differences between the pores and throats, mainly focusing on pore analysis. This work aims to analyze the pore structure and petrophysical properties of the reservoir using various methods. The study utilized the constant velocity mercury intrusion method to quantify pores and throats separately. Scanning electron microscopy and casting thin section techniques characterize the pore and throat morphology. The analysis compares the pore structures in reservoirs with different petrophysical properties. Additionally, pore and throat types are classified based on fractal dimensions, and factors influencing their development are discussed. Results reveal feldspar lithic sandstone as the predominant rock type with a low compositional maturity. The sandstone reservoirs exhibit low porosity (10.23%) and ultralow permeability (0.99 mD). Primary reservoir pore spaces include intergranular pores, dissolution pores, and microfractures. Pore radius averages at 195.32 µm, while throat radius is 3.76 µm. Pore structures are categorized as micropore small-throat, small-pore small-throat, and large-pore coarse-throat types. The study area generally exhibits a high pore-to-throat ratio, impacting reservoir petrophysical properties significantly. Pore development is primarily influenced by early diagenesis, organic acid dissolution, and hydrocarbon filling. Weak compaction and cementation transformations provide a material and spatial basis for the subsequent dissolution. The presence of thick organic-rich mudstone above and below the reservoir contributes to organic acid dissolution and hydrocarbon filling.

8.
J Colloid Interface Sci ; 663: 930-946, 2024 Jun.
Article En | MEDLINE | ID: mdl-38447407

Recovery of valuable metals from spent lithium-ion batteries (LIBs) is of great importance for resource sustainability and environmental protection. This study introduced pyrite ore (FeS2) as an alternative additive to achieve the selective recovery of Li2CO3 from spent LiCoO2 (LCO) batteries. The mechanism study revealed that the sulfation reaction followed two pathways. During the initial stage (550 °C-800 °C), the decomposition and oxidation of FeS2 and the subsequent gas-solid reaction between the resulting SO2 and layered LCO play crucial roles. The sulfation of lithium occurred prior to cobalt, resulting in the disruption of layered structure of LCO and the transformation into tetragonal spinel. In the second stage (over 800 °C), the dominated reactions were the decomposition of orthorhombic cobalt sulfate and its combination with rhombohedral Fe2O3 to form CoFe2O4. The deintercalation of Li from LCO by the substitution of Fe and conversion of Co(III)/Fe(II) into Co3O4/CoFe2O4 were further confirmed by density functional theory (DFT) calculation results. This fundamental understanding of the sulfation reaction facilitated the future development of lithium extraction methods that utilized additives to substantially reduce energy consumption.

9.
mSystems ; 9(3): e0120823, 2024 Mar 19.
Article En | MEDLINE | ID: mdl-38334416

The morphogenesis of sexual fruiting bodies of fungi is a complex process determined by a genetically encoded program. Fruiting bodies reached the highest complexity levels in the Agaricomycetes; yet, the underlying genetics is currently poorly known. In this work, we functionally characterized a highly conserved gene termed snb1, whose expression level increases rapidly during fruiting body initiation. According to phylogenetic analyses, orthologs of snb1 are present in almost all agaricomycetes and may represent a novel conserved gene family that plays a substantial role in fruiting body development. We disrupted snb1 using CRISPR/Cas9 in the agaricomycete model organism Coprinopsis cinerea. snb1 deletion mutants formed unique, snowball-shaped, rudimentary fruiting bodies that could not differentiate caps, stipes, and lamellae. We took advantage of this phenotype to study fruiting body differentiation using RNA-Seq analyses. This revealed differentially regulated genes and gene families that, based on wild-type RNA-Seq data, were upregulated early during development and showed tissue-specific expression, suggesting a potential role in differentiation. Taken together, the novel gene family of snb1 and the differentially expressed genes in the snb1 mutants provide valuable insights into the complex mechanisms underlying developmental patterning in the Agaricomycetes. IMPORTANCE: Fruiting bodies of mushroom-forming fungi (Agaricomycetes) are complex multicellular structures, with a spatially and temporally integrated developmental program that is, however, currently poorly known. In this study, we present a novel, conserved gene family, Snowball (snb), termed after the unique, differentiation-less fruiting body morphology of snb1 knockout strains in the model mushroom Coprinopsis cinerea. snb is a gene of unknown function that is highly conserved among agaricomycetes and encodes a protein of unknown function. A comparative transcriptomic analysis of the early developmental stages of differentiated wild-type and non-differentiated mutant fruiting bodies revealed conserved differentially expressed genes which may be related to tissue differentiation and developmental patterning fruiting body development.


Agaricales , Ascomycota , Basidiomycota , Fruiting Bodies, Fungal/genetics , Phylogeny , Fungal Proteins/genetics , Agaricales/genetics , Basidiomycota/metabolism , Ascomycota/metabolism
10.
BMC Cardiovasc Disord ; 24(1): 60, 2024 Jan 19.
Article En | MEDLINE | ID: mdl-38243161

BACKGROUND: The triglyceride glucose-body mass index (TyG-BMI index) has been suggested as a novel predictor of insulin resistance. However, its predictive value for slow coronary flow phenomenon (SCFP) in patients with ischemia and nonobstructive coronary arteries (INOCA) remains unclear. METHODS: We consecutively recruited 1625 patients with INOCA from February 2019 to February 2023 and divided them into two groups based on thrombolysis in myocardial infarction (TIMI) frame counts (TFCs): the SCFP group (n = 79) and the control group. A 1:2 age-matched case-control study was then performed. The TyG-BMI index was calculated as ln [plasma triglyceride (mg/dL) × fasting blood glucose (mg/dL)/2] × BMI. RESULTS: TyG-BMI index in the SCFP group (218.3 ± 25.2 vs 201.0 ± 26.5, P < .001) was significantly higher than in the normal controls. TyG-BMI index also increased with the number of coronary arteries involved in the SCFP. Multivariate logistic regression analysis showed that TyG-BMI, BMI, and TG were independent predictors for SCFP. Receiver operating characteristic (ROC) curve analysis showed that when the TyG-BMI index was above 206.7, the sensitivity and specificity were 88.6% and 68.5%, respectively, with an AUC of 0.809 (95% CI: 0.756-0.863, P = .027). Combined BMI with TG, the TyG-BMI index had a better predictive value for SCFP than BMI and TG (P < .001). CONCLUSION: The TyG-BMI index was an independent predictor for SCFP in INOCA patients, and it had a better predictive value than BMI and TG.


Glucose , No-Reflow Phenomenon , Humans , Body Mass Index , Blood Glucose , Coronary Vessels , Triglycerides , Case-Control Studies , Biomarkers , Ischemia , No-Reflow Phenomenon/diagnostic imaging , No-Reflow Phenomenon/etiology
11.
Quant Imaging Med Surg ; 13(12): 8435-8446, 2023 Dec 01.
Article En | MEDLINE | ID: mdl-38106296

Background: Investigation of fetal cerebral maturation (FCM) is necessary and important to provide crucial prognostic information for normal and high-risk fetuses. The study aimed to develop a valid and quantitative predictive model for assessing FCM using ultrasound and validate the model for fetuses with normal and restricted growth. Methods: This was a multicenter prospective observational study. Fetuses with normal growth recruited from a university teaching hospital (Center 1) and a municipal maternal unit (Center 2) were included in the training set and external validation set 1, respectively. The 124 growth-restricted fetuses enrolled in Center 1 were included in validation set 2. FCM was used to describe the gestational age (GA) in this study. The model was developed based on the sum of fetal cranial parameters (total fetal cranial parameters), including head circumference (HC) and depths of the insula (INS) and sylvian fissure (SF), parieto-occipital fissure (POF), and calcarine fissure (CF). A regression model, constructed based on total fetal cranial parameters and predicted GA, was established using the training set and validated using external validation set 1 and validation set 2. Results: The intra- and interobserver intraclass correlation coefficients for HC, and depths of the INS and SF, POF, and CF were >0.90. An exponential regression equation was used to predict FCM: predicted GA of FCM (weeks) =11.16 × exp (0.003 × total fetal cranial parameters) (P<0.001; adjusted R2=0.973), standard error of estimate, 0.67 weeks. The standard error of the predicted GA of FCM from the model was ±4.7 days. In the validation set 1, the mean standard error of the developed prediction model for FCM was 0.97 weeks. The predictive model showed that FCM was significantly delayed in validation set 2 (2.10±1.31 weeks, P<0.001), considering the GA per the last menstrual period. Conclusions: The predictive performance of the FCM model developed in this study was excellent, and the novel model may be a valuable investigative tool during clinical implementation.

12.
Article En | MEDLINE | ID: mdl-37929734

BACKGROUND: Research suggests that lowering maternal morbidities associated with gestational diabetes mellitus (GDM) can be achieved with earlier risk group identification. AIMS: Therefore, the purpose of this study was to examine potential markers for identifying first-trimester pregnant women who are at high risk for developing GDM. METHODS: This was a retrospective cohort study. The pertinent maternal clinical data were retrieved prior to 13+6 weeks of gestation, and a binary logistic regression analysis was used to identify potential GDM predictors. The predictive accuracy was evaluated using the area below the receiver operating characteristics curves. RESULTS: In comparison to the control group, the GDM group had significantly higher mean values for age, body mass index (BMI), mean fasting blood glucose (FBG), and hemoglobin (p < 0.05). The Pearson's correlation coefficients indicated that the first-trimester FBG was significantly positively correlated with the second-trimester FBG. Higher FBG and BMI values were associated with an increased risk of developing GDM (odds ratio [OR] = 3.04, 95% confidence interval [CI] = 2.03-4.55 and OR = 1.18, 95% CI = 1.12-1.25). In terms of predicting GDM, the FBG parameter demonstrated the greatest area under the curve values (0.66), followed by the BMI parameter (0.69). For GDM prediction, the cut-off value for FBG was 4.32 mM, whereas that for BMI was 23.7 kg/m2. CONCLUSIONS: The first-trimester FBG and BMI could be utilized to predict gestational diabetes.

13.
BMC Psychiatry ; 23(1): 805, 2023 11 03.
Article En | MEDLINE | ID: mdl-37924073

BACKGROUND: In Wilson's disease (WD) patients, network connections across the brain are disrupted, affecting multidomain function. However, the details of this neuropathophysiological mechanism remain unclear due to the rarity of WD. In this study, we aimed to investigate alterations in brain network connectivity at the whole-brain level (both intra- and inter-network) in WD patients through independent component analysis (ICA) and the relationship between alterations in these brain network functional connections (FCs) and clinical neuropsychiatric features to understand the underlying pathophysiological and central compensatory mechanisms. METHODS: Eighty-five patients with WD and age- and sex-matched 85 healthy control (HC) were recruited for resting-state functional magnetic resonance imaging (rs-fMRI) scanning. We extracted the resting-state networks (RSNs) using the ICA method, analyzed the changes of FC in these networks and the correlation between alterations in FCs and clinical neuropsychiatric features. RESULTS: Compared with HC, WD showed widespread lower connectivity within RSNs, involving default mode network (DMN), frontoparietal network (FPN), somatomotor network (SMN), dorsal attention network (DAN), especially in patients with abnormal UWDRS scores. Furthermore, the decreased FCs in the left medial prefrontal cortex (L_ MPFC), left anterior cingulate gyrus (L_ACC), precuneus (PCUN)within DMN were negatively correlated with the Unified Wilson's Disease Rating Scale-neurological characteristic examination (UWDRS-N), and the decreased FCs in the L_MPFC, PCUN within DMN were negatively correlated with the Unified Wilson's Disease Rating Scale-psychiatric symptoms examination (UWDRS-P). We additionally discovered that the patients with WD exhibited significantly stronger FC between the FPN and DMN, between the DAN and DMN, and between the FPN and DAN compared to HC. CONCLUSIONS: We have provided evidence that WD is a disease with widespread dysfunctional connectivity in resting networks in brain, leading to neurological features and psychiatric symptoms (e.g. higher-order cognitive control and motor control impairments). The alter intra- and inter-network in the brain may be the neural underpinnings for the neuropathological symptoms and the process of injury compensation in WD patients.


Hepatolenticular Degeneration , Humans , Hepatolenticular Degeneration/complications , Hepatolenticular Degeneration/diagnostic imaging , Brain Mapping/methods , Brain/diagnostic imaging , Parietal Lobe , Magnetic Resonance Imaging/methods
14.
Zhongguo Zhong Yao Za Zhi ; 48(18): 5102-5112, 2023 Sep.
Article Zh | MEDLINE | ID: mdl-37802852

In this study, the evidence map system was used to sort out the clinical research evidence on traditional Chinese medicine(TCM) treatment of vertigo and understand the evidence distribution in this field. CNKI, Wanfang, VIP, SinoMed, PubMed, EMbase, and Web of Science were searched for the clinical randomized controlled trial(RCT) and systematic reviews/Meta-analysis on TCM treatment of vertigo in recent five years, and the evidence was analyzed and presented in the form of text and charts. The Cochrane handbook for systematic reviews of interventions was used to evaluate the quality of the clinical RCT, and the AMSTAR mea-surement tool was used to evaluate the quality of the systematic reviews/Meta-analysis. A total of 382 RCTs and eight systematic reviews/Meta-analysis were included. In recent five years, the number of published articles has been on the rise. There were many intervention measures and TCM therapies for vertigo. Outcome indicators mainly included clinical efficacy, TCM syndrome score, vertigo score, occurrence of adverse reactions, and effective rate. The overall quality of clinical RCT and systematic reviews/Meta-analysis was low. Most studies have proven the potential efficacy of TCM in treating vertigo, but there was still no clear clinical evidence of efficacy. The results show that TCM has advantages in the treatment of vertigo, but there are also problems. More high-quality studies are still lacking, suggesting that more large-sample and multi-center RCT should be conducted in the future, and the quality of relevant syste-matic reviews/Meta-analysis should be improved to fully explore the advantages of TCM in the treatment of vertigo, and provide strong support for the effectiveness and safety of TCM in the treatment of vertigo.


Drugs, Chinese Herbal , Medicine, Chinese Traditional , Humans , Systematic Reviews as Topic , Treatment Outcome , Syndrome , Publications , Drugs, Chinese Herbal/therapeutic use
15.
Cell Mol Neurobiol ; 43(8): 4041-4058, 2023 Nov.
Article En | MEDLINE | ID: mdl-37874455

The primary underlying contributor for cataract, a leading cause of vision impairment and blindness worldwide, is oxidative stress. Oxidative stress triggers protein damage, cell apoptosis, and subsequent cataract formation. The nuclear factor-erythroid 2-related factor 2 (Nrf2) serves as a principal redox transcriptional factor in the lens, offering a line of defense against oxidative stress. In response to oxidative challenges, Nrf2 dissociates from its inhibitor, Kelch-like ECH-associated protein 1 (Keap1), moves to the nucleus, and binds to the antioxidant response element (ARE) to activate the Nrf2-dependent antioxidant system. In parallel, oxidative stress also induces endoplasmic reticulum stress (ERS). Reactive oxygen species (ROS), generated during oxidative stress, can directly damage proteins, causing them to misfold. Initially, the unfolded protein response (UPR) activates to mitigate excessive misfolded proteins. Yet, under persistent or severe stress, the failure to rectify protein misfolding leads to an accumulation of these aberrant proteins, pushing the UPR towards an apoptotic pathway, further contributing to cataractogenesis. Importantly, there is a dynamic interaction between the Nrf2 antioxidant system and the ERS/UPR mechanism in the lens. This interplay, where ERS/UPR can modulate Nrf2 expression and vice versa, holds potential therapeutic implications for cataract prevention and treatment. This review explores the intricate crosstalk between these systems, aiming to illuminate strategies for future advancements in cataract prevention and intervention. The Nrf2-dependent antioxidant system communicates and cross-talks with the ERS/UPR pathway. Both mechanisms are proposed to play pivotal roles in the onset of cataract formation.


Antioxidants , Cataract , Humans , Antioxidants/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , NF-E2-Related Factor 2/metabolism , Endoplasmic Reticulum Stress/physiology , Oxidative Stress/physiology , Reactive Oxygen Species/metabolism
16.
Inorg Chem ; 62(42): 17341-17351, 2023 Oct 23.
Article En | MEDLINE | ID: mdl-37802134

The conventional Mn-based catalysts suffer from lead toxicity and require other transition-metal oxides to enhance their resistance in the selective catalytic reduction of NOx with ammonia (NH3-SCR). Herein, we found that the incorporation of inert silica into pure MnOx effectively improved the Pb resistance. The NOx conversion of the MnOx-SiO2-Pb catalyst was nearly 55% higher than that of the MnOx-Pb catalyst, exhibiting enhanced activity at lower temperatures (150-225 °C). To reveal the essential roles at the molecular level, the types and numbers of surface acidity, nitrate species, and catalytic cycle were established through experimental analysis and theoretical calculations of catalysts. The presence of PbCl2 occupied the active Mn sites, resulting in an obvious decline in the Brønsted acid sites (B-NH4+) and the oxidation performance, and the NH3-SCR cycle was energetically less favorable on the MnOx-Pb catalyst. Conversely, SiO2 played a crucial role in preserving the activity of Mn sites on the MnOx-SiO2-Pb catalyst by preferentially bonding with PbCl2, generating more active intermediates. Significantly, this work provided mechanistic insights into the role of SiO2 in regulating the surface acidity, oxidation performance, and stability of active Mn sites, which is helpful for the design of Mn-based catalysts with high Pb resistance for the NH3-SCR reaction.

17.
Chem Sci ; 14(32): 8564-8569, 2023 Aug 16.
Article En | MEDLINE | ID: mdl-37592987

N-N axially chiral biaryls represent a rarely explored class of atropisomeric compounds. We hereby report rhodium-catalyzed enantioselective [4 + 2] oxidative annulation of internal alkynes with benzamides bearing two classes of N-N directing groups. The coupling occurs under mild conditions via NH and CH annulation through the dynamic kinetic transformation of the directing group and is highly enantioselective with good functional tolerance. Computational studies of a coupling system at the DFT level has been conducted, and the alkyne insertion was identified as the enantio-determining as well as the turnover-limiting step.

18.
Org Lett ; 25(31): 5862-5868, 2023 Aug 11.
Article En | MEDLINE | ID: mdl-37534703

The combination of photo and copper catalysts has emerged as a novel paradigm in organic catalysis, which provides access to the acceleration of chemical synthesis. Herein, we describe an aminoalkylation of amino-dependent olefins with maleimides through a cooperative photo/copper catalytic system. In this report, the strategy allows the generation of a broad complex of functionalized nitrogenous molecules including oxazolidinones, 2-pyrrolidones, imidazolidinones, thiazolidinones, pyridines, and piperidines in the absence of an external photosensitizer and base. The approach is achieved through a photoinduced Cu(I)/Cu(II)/Cu(III) complex species of nitrogen nucleophiles, intermolecular radical addition, and hydrogen atom transfer (HAT) processes. The plausible mechanism is investigated by a series of control experiments and theoretical tests, including radical scavenging experiments, deuterium labeling experiments, ultraviolet-visible absorption, and cyclic voltammetry (CV) tests.

19.
J Ovarian Res ; 16(1): 145, 2023 Jul 21.
Article En | MEDLINE | ID: mdl-37480140

CONTEXT: Granulosa cells (GCs) that surround oocytes in mammalian reproduction play an active role in oocyte differentiation through proliferation and energy production. AIMS: This study aimed to investigate the characteristics of the energy metabolism of ovarian GCs and the influence of GCs on the early embryonic development in polycystic ovary syndrome (PCOS). METHODS: The clinical characteristics and in vitro fertilization-embryo transfer treatment outcomes of 39 patients with PCOS and 68 patients with simple tubal factor infertility who underwent controlled ovarian hyperstimulation were analyzed and summarized. The mitochondrial function and glucose metabolism level of the GCs were determined, as well as the content of oxidative stress markers in the follicular fluid (FF) of patients with and without PCOS. KEY RESULTS: When compared to the non-PCOS group, patients with PCOS had a significantly increased number of retrieved oocytes but a significantly decreased number of high-quality embryos, available embryos, and high-quality blastocyst formation (P < 0.05). Furthermore, the mitochondrial membrane potential, adenosine triphosphate level, and mitochondrial DNA (mtDNA) copy number decreased in the GCs, whereas the levels of reactive oxygen species increased (P < 0.01). The levels of malondialdehyde and 8-oxo-deoxyguanosine (8-OHdG) in the follicular fluid (FF) of the patients with PCOS were higher than those of the control group (P < 0.05), and superoxide dismutase was increased by compensation (P < 0.05). In the PCOS group, the expressions of GLUT1, LDHA, and PFKP were lower than those in the non-PCOS group, and glucose levels were higher. CONCLUSIONS: The low oocyte competence of PCOS may be associated with mitochondrial dysfunction and abnormal glycolysis. IMPLICATIONS: This research offers explanations for the possible connections influencing human ovarian folliculogenesis.


Polycystic Ovary Syndrome , Pregnancy , Female , Humans , Polycystic Ovary Syndrome/metabolism , Granulosa Cells/metabolism , Embryo Transfer , Follicular Fluid/metabolism , Obesity/metabolism , Fertilization in Vitro , Energy Metabolism
20.
Chemistry ; 29(46): e202301390, 2023 Aug 15.
Article En | MEDLINE | ID: mdl-37280159

Chemodivergent tandem radical cyclization offers exciting possibilities for the synthesis of structurally diverse cyclic compounds. Herein, we revealed a chemodivergent tandem cyclization of alkene-substituted quinazolinones under metal- and base-free conditions, this transformation is initiated by alkyl radicals produced from oxidant-induced α-C(sp3 )-H functionalization of alkyl nitriles or esters. The reaction resulted in the selective synthesis of a series of mono- and di-alkylated ring-fused quinazolinones by modulating the loading of oxidant, reaction temperature, and reaction time. Mechanistic investigations show that the mono-alkylated ring-fused quinazolinones is constructed by the key process of 1,2-hydrogen shift, whereas the di-alkylated ring-fused quinazolinones is mainly achieved through crucial steps of resonance and proton transfer. This protocol is the first example of remote second alkylation on the aromatic ring via α-C(sp3 )-H functionalization and difunctionalization achieved by association of two unsaturated bonds in radical cyclization.

...